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Abstract

This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem

in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights

used in the SLE algorithm are calculated based on conditional covariances, and yield estimates that satisfy the minimum-mean-

square-error criterion. Furthermore, the weights for well-posed or deterministic inverse problems are equivalent to the inverse of

Jacobian matrices of the classical Newton–Raphson (NR) algorithm for the non-linear forward problem. For ill-posed or stochastic

inverse problems, the weights are smooth interpreted quantities of the inverse of the Jacobian at data locations, based on the spatial

covariance of parameters. For both deterministic and stochastic inverse problems, the SLE algorithm converges as in the NR

scheme for the forward non-linear problem.

The SLE approach is verified with a simple forward exponential model and compared to the exact lognormal conditional mean

estimates. Results show that for the deterministic inverse problem, this approach can yield an exact solution, whereas the estimate of

the SLE approach for the stochastic inverse problem is exact up to a known residual term related to the conditional estimation

variance.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Characterizing the spatial distribution of hydraulic

properties of porous media is a necessary step towards

high-resolution predictions of water flow and contami-

nant transport in an aquifer. High-density measure-

ments of hydraulic properties over a large volume of

an aquifer are rare, cost-prohibitive and practically

impossible. Measurements of responses of an aquifer, on

the other hand, are generally less costly and abundant.
Making use of the abundant measurements of an aqui-

fer�s responses to characterize the spatial distribution of

its hydraulic properties is therefore a logical step. This is

known as the inverse problem in subsurface hydrology.

Numerous researchers have developed various

methods to solve the inverse problem during the last few

decades. Most of these methods use sparsely monitored

hydraulic head /ðxÞ, to derive the spatially distributed
transmissivity T ðxÞ, that minimizes an objective func-

tion,
P

ð/ðxÞ � /̂/ðxÞÞ2, where /̂/ðxÞ is the simulated head

based on the estimated transmissivity bTT ðxÞ. The method

is, generally, a least-squares optimization approach with
some variations. See [2,17,18] for a comprehensive re-

view of the methods.

The other approach that has become popular during

the past decade is the geostatistically based approach,

cokriging (e.g., [4–6,8–10,13,16,20,22,23,25]). For a

mildly heterogeneous aquifer, where the perturbation of

the natural logarithm of the transmissivity is linearly

related to the perturbation of the hydraulic head field, it
can be shown that cokriging and classical optimization

approaches yield identical solutions. This is true if the

least-squares optimization approach starts with kriged

parameter estimates and considers the spatial covariance

of the parameter [14,3]. Cokriging nevertheless differs

from the least-squares approach in many ways. The

least-squares approach is a regression model that con-

siders only the sensitivity matrix (i.e., model cross-cor-
relation structure) of the model response to changes in

the parameter. Conversely, cokriging is a linear esti-

mator based on observations, and it uses: the spatial

covariance of the parameter; the spatial covariance of

the response of the model; the spatial cross-covariance

of the parameter; and the response to yield the estimate
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that satisfies the minimum-mean-square-error criterion.

Unlike the sensitivity matrix, the spatial cross-covari-

ance is a product of the spatial covariance of the pa-

rameter and the sensitivity matrix.

Computational algorithms of the two approaches are
also different. Cokriging estimates a parameter at one

location at a time using all the observations simulta-

neously or sequentially [19], although simultaneous es-

timation of parameters at all locations is possible [15].

On the other hand, the classical least-squares approach

generally requires estimation of parameters at all loca-

tions using all available observations simultaneously.

It is a well-known fact that cokriging implicitly as-
sumes the stochastic parameter is a Gaussian process

[15]. Whether or not the process is Gaussian, the argu-

ment is that if the process is Gaussian, then cokriging is

the best linear unbiased estimator; if the process is non-

Gaussian, cokriging gives merely a best ‘‘linear’’ pre-

dictor.

Cokriging is a linear estimator (i.e., it assumes that

the transmissivity estimate is a linear combination of the
hydraulic head data values) while the relation between

the transmissivity and the hydraulic head field in the

governing groundwater flow model is non-linear.

Therefore, cokriging typically cannot take full advan-

tage of the head information during the estimation. To

overcome this limitation of the classical cokriging

method, Yeh et al. [24] developed a successive linear

estimator (SLE) approach. The approach is similar to
that developed by Gutjahr et al. [7], but the SLE method

considers the successive improvement of the conditional

covariance.

While cokriging estimates the conditional mean of the

transmissivity and the hydraulic head in a Gaussian

framework, the SLE method estimates the conditional

effective transmissivity and hydraulic heads. To illus-

trate this difference, consider the case of steady flow in
the aquifer that is described by the governing ground-

water flow equation:

r � ½T ðxÞr/ðxÞ� ¼ 0 ð1Þ

which is subject to some given boundary conditions. In
Eq. (1), x denotes the coordinates, T is the parameter

(transmissivity), and / is the response (the hydraulic

head) of the system. To derive the inverse solution to

Eq. (1) with sparse measurements of the hydraulic head

and the transmissivity, Yeh et al. [24] resort to the

conditional stochastic representation. That is, they

considered possible solutions (transmissivity fields) to

the inverse problem as realizations of a stochastic pro-
cess that are conditioned to observations. Each condi-

tional realization of the transmissivity field can thus be

expressed as the sum of the conditional expected value,

E½ �, and a perturbation, i.e., ln T ðxÞ ¼ E½ln T ðxÞ� þ sðxÞ,
where ln is the natural logarithm. Because of the sto-

chastic representation, the hydraulic head also is con-

sidered as a stochastic process conditioned on the

observation and thus /ðxÞ ¼ E½/ðxÞ� þ hðxÞ. Replacing

the transmissivity and the hydraulic head in Eq. (1) with

the stochastic process, and taking the expected value of

Eq. (1), one derives a conditional-mean-flow equation:

r2E½/ðxÞ�
�

þrE½ln T ðxÞ� � rE½/ðxÞ�
�

þ E½r½sðxÞ� � r½hðxÞ�� ¼ 0 ð2Þ

As indicated in Eq. (2), the conditional mean transmis-

sivity and head fields do not satisfy mass balance unless

the second term is zero. The term will be zero only if no
uncertainty exists in the hydraulic head or the trans-

missivity field, and boundary conditions and the flux are

known exactly. Otherwise, this term E½r½sðxÞ� � r½hðxÞ��
must be determined a priori; however, evaluation of this

term is usually intractable. Consequently, Yeh et al. [24]

resort to the use of a conditional effective transmissivity

TceffðxÞ and head /ceffðxÞ fields that satisfy the mass

balance requirement, i.e., r � ½TceffðxÞr/ceffðxÞ� ¼ 0. In
other words, the contribution of the second term is

distributed to both Tceff and /ceff . According to this

approach, the conditional effective transmissivity is a

parameter field that agrees with the transmissivity

measurements at sample locations. Moreover, it yields a

conditional effective hydraulic head field that preserves

values of the hydraulic head measurements when it is

used in Eq. (1).
Parallel to the SLE method, Vargas-Guzm�aan and

Yeh [19] developed the theory of sequential kriging and

cokriging. In sequential kriging, the difference between

the observed value and the estimate, and the sequential

update of the conditional covariance function are used

to obtain the updated estimate. While the algorithm and

procedure of the SLE for the inverse problem and se-

quential kriging are similar, the goals of the two are
different. Sequential kriging splits a large data set into

subsets, and each subset is included sequentially in the

estimation. Conversely, SLE successively incorporates

the non-linear effect into estimation of model par-

ameters. For a linear system, Vargas-Guzm�aan and Yeh

[19] showed that sequential kriging is identical to kriging

using all the data sets simultaneously.

While many hydrological applications of the SLE
method to hydrological problems (e.g., [11,21,24,25])

have demonstrated the robustness of the method, its

convergence and properties of the estimated conditional

effective parameters remain to be examined. The objec-

tive of this study is to visit the theoretical basis of the

convergence of the SLE method and to verify the esti-

mate of the SLE method by using a simplified non-linear

model. The simplified model relates two random fields
through an exponential relation, which can be linear-

lized after a logarithm transformation. Therefore, the

exact conditional mean can be derived using classical

lognormal kriging. The difference between the estimate
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by the SLE method and the exact conditional mean is

subsequently analyzed.

2. Review of successive linear estimator

2.1. A non-linear estimator

To account for non-linearity between the response

(the hydraulic head) and the parameter (the transmis-

sivity) of a system (the aquifer), the SLE method starts

with an initial cokriging estimate bTT 1ðxÞ at each location

in the domain (see [24] for details). Subsequently, a

forward model for the system (i.e., Eq. (1)) is solved
using bTT 1ðxÞ for /̂/ðxÞ and the vector of errors D/ðxbÞ is
computed as

D/rðxbÞ ¼ ð/ðxbÞ � /̂/rðxbÞÞ ð3Þ

where the superscript r is the iteration index, /ðxbÞ is a
vector of n observed responses at the sample locations

fxbjb ¼ 1; . . . ; ng, and /̂/rðxbÞ is the vector of the re-

sponse at sample locations xb computed from the for-

ward model. The updated parameter estimate bTT rþ1ðxÞ at
any iteration r þ 1 is:bTT rþ1ðxÞ ¼ bTT rðxÞ þ -TD/rðxbÞ ð4Þ

Note that hereafter a superscript T means transpose

unless otherwise indicated. The transpose of the vector

of weights -T for Eq. (4) is obtained by solving a system

of equations at each step. That is,

erD/D/- ¼ erD/DT ð5Þ

where erD/D/ and erD/DT are the conditional (or residual)

covariance and cross-covariance of the residuals D/ and

DT and DT ¼ bTT rþ1 � bTT r. Calculations of the covariance

and cross-covariance are discussed in Section 2.2.

The system of Eq. (5) for the residuals may be ill

conditioned during iterations and the solution can be
unstable. Consequently, a stabilizer is added to the

major diagonal of erD/D/. The procedure (Eqs. (3)–(5))

iterates until the variance of estimated parameters con-

vergences [11,21,24,25].

2.2. First-order approximation for covariances

In order to evaluate the weights in Eq. (5), the co-
variance of the residual parameter, erDTDT , and the error

response attribute, erD/D/, and the cross-covariance be-

tween the parameter and response residuals, erD/DT , must

be specified [24]. While erDTDT is specified a priori, both

erD/D/ and erD/DT are approximated using the first-order

approximation approach as follows:

erD/DT ¼ JerDTDT ð6Þ

erD/D/ ¼ JerDTDTJ
T ð7Þ

where J is the Jacobian or sensitivity matrix of the

forward model. The residual covariance erDTDT is com-

puted at each iteration as

erþ1
DTDT ¼ erDTDT � ð-rÞTerDTD/ ð8Þ

Notice that for r ¼ 2 the residual covariances may

be computed including the weights k for the few m

data parameters T ðxaÞ available at locations fxaja ¼
1; . . . ;mg, where a is the location index where the pa-

rameter is observed. That is,

e2DTDT ¼ cDTDT � ð-1ÞTcDTD/ � kTcDTDTa

where cDTDTa is the matrix of unconditional covariance
for the parameter, and cDTD/ is the matrix of uncondi-

tional cross-covariance for the parameter and the

response.

3. Properties of the successive linear estimator

3.1. The deterministic inversion problem

If the SLE approach described above is applied to a

well-posed inverse problem or deterministic problem, it

is equivalent to the Newton–Raphson (NR) algorithm.

In the case for our discussion, a well-posed problem
implies that all the responses within the domain are

completely specified at all locations, and are error free.

In addition, boundary conditions and fluxes (for

groundwater problems) are known.

Substituting the first order approximation (i.e., Eqs.

(6) and (7)) into the system of Eq. (5), assuming D/r is

known in the entire domain yields

½JerDTDTJ
T�- ¼ JerDTDT ð9Þ

Note that in this inverse problem, the number of re-

sponse data locations n ¼ N and the number of esti-
mated parameter locations N are the same, and J is a

N  N square matrix for this section. The matrix of

weights for the locations to be estimated is then

- ¼ ½JerDTDTJ
T��1½JerDTDT � ð10Þ

Rearranging the product (with parenthesis) yields

- ¼ ½ðJerDTDT ÞðJTÞ�
�1½JerDTDT � ð11Þ

Introducing the inverse operator results in

- ¼ ðJTÞ�1ðJerDTDT Þ
�1½JerDTDT � ð12Þ

Thus, the square matrices of covariances cancel out and

this yields

-T ¼ J�1 ð13Þ
The SLE estimator becomes

DbTT rþ1ðxÞ ¼ J�1D/ðxÞr ð14Þ
Eq. (14) shows that the SLE approach for a determin-

istic inverse problem is analogous to the NR iteration
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scheme for solving a non-linear forward problem. In this

case, the response attribute is known at all elements in

the domain, and no interpolation is required. This spe-

cial case shows the equivalence between sensitivity ma-

trices and the weights in the SLE. Therefore, the SLE is
a non-linear solution technique for the inverse problem.

Also notice that in the case of a linear problem, no it-

erations are required and the approach reduces to simple

cokriging.

3.2. The stochastic inverse problem

Consider the stochastic inverse problem where in-

formation about the system response is incomplete. If

we assume that residuals for the parameter DbTT rþ1ðxbÞ
are available at locations of response attributes for di-

rect estimation, then a simple kriging of the residuals

would apply such that the entire domain D is directly

estimated at each iteration step. That is

DbTT rþ1ðxÞ ¼ ðerþ1
DTbDTb

Þ�1
erþ1
DTbDTD

h iT
DT rþ1ðxbÞ ð15Þ

where erþ1
DTbDTb

and erþ1
DTbDTD

represent the covariance be-

tween the parameter residuals at sample locations, and

the covariance between the parameter residuals at

sample locations and all other locations in the domain,

respectively. For the stochastic inverse problem, the es-

timator is

DbTT rþ1ðxÞ ¼ -TD/rðxbÞ ð16Þ
Combining both Eqs. (15) and (16), one obtains

ðerþ1
DTbDTb

Þ�1
erþ1
DTbDTD

h iT
DT rþ1ðxbÞ ¼ -TD/rðxbÞ ð17Þ

For the general case of incomplete response informa-

tion, consider a reduced square Jacobian matrix Jb for

sample locations such that

DbTT rþ1ðxbÞ ¼ J�1
b D/rðxbÞ ð18Þ

Note that the terms DbTT rþ1ðxbÞ and D/rðxbÞ appear in

both Eqs. (17) and (18). Multiplying Eq. (17) by the
transpose vector ðD/rðxbÞÞT gives

ðerþ1
DTbDTb

Þ�1
erþ1
DTbDTD

h iT
DT rþ1ðxbÞðD/rðxbÞÞT

¼ -TD/rðxbÞðD/rðxbÞÞT ð19Þ

The same operation for Eq. (18) is

DbTT rþ1ðxbÞðD/rðxbÞÞT ¼ J�1
b D/rðxbÞðD/rðxbÞÞT ð20Þ

After rearranging Eq. (19) by leaving the weights on the

right-hand side, Eq. (19) becomes

ðerþ1
DTbDTb

Þ�1
erþ1
DTbDTD

h iT
DT rþ1ðxbÞ

 ðD/rðxbÞÞT D/rðxbÞðD/rðxbÞÞT
h i�1

¼ -T ð21Þ

Applying the same operation to Eq. (20) gives

DbTT rþ1ðxbÞðD/rðxbÞÞT D/rðxbÞðD/rðxbÞÞT
h i�1

¼ J�1
b ð22Þ

Eq. (22) is analogous to the cokriging system. Notice

that the vectors of products give square matrices of

second moments for the Jacobians. Substituting Eq. (22)

into Eq. (21) yields

ðerþ1
DTbDTb

Þ�1
erþ1
DTbDTD

h iT
J�1

b ¼ -T ð23Þ

This shows that the SLE weights -T merely are inter-

polated values of the inverse of the Jacobians Jb at data

locations, and Eq. (23) is a simple kriging. The kriging

weights kT for estimation of the SLE weights -T are

kT ¼ ½ðerþ1
DTbDTb

Þ�1
erþ1
DTbDTD

�T. Thus, the variance of the in-

verse of the Jacobians at a given step is var½J�1
b � � r2

kðxÞ,
where r2

kðxÞ ¼ ½erþ1
DTbDTD

�Tk is the kriging variance. This is
coherent with the smoothing effect of kriging [19], where

a small kriging variance reflects the impact of informa-

tion. In the extreme case of complete response infor-

mation, the estimation variance of the inverse of the

Jacobian is zero everywhere, and weights equal the in-

verse of the Jacobians for the deterministic NR scheme.

However, the weights kT change for each iteration of

the SLE procedure, in a manner similar to the modifi-
cation of the Jacobian at each iteration in the classi-

cal NR scheme for solving the non-linear forward

problem.

Notice also that the smoothing effect for estimated

parameters is different. The smoothness of estimated

parameters is caused by: (1) uncertainty at unsampled

locations; and (2) the linear approximation of the non-

linear relation between perturbations of the parameter
and the response of the system. The former diminishes if

more information is included in the estimation, while the

latter will reduce only through iterations to account for

the non-linearity. The cokriging parameter estimation

variance can be quantified for each iteration from the

cokriging weights multiplied by the right-hand side

cross-covariances in Eq. (9). Then, using Eq. (23), the

estimation variance for a single step is r2
kT ¼

½Jerþ1
DTDDTD

�T½kTJ�1
b �T. In practice, the smoothing effect for

parameters will reduce as the solution converges.

3.3. Convergence of the successive linear estimator

Recall the well-known differential mean value theo-

rem [1]. Let a function /ðT Þ be continuous for an in-

terval a6 T 6 b and differentiable for a < T < b; there
exists at least one mean value of T ¼ eTT for which the

approximate Jacobian derivative is exact. This is

Ji ¼
o/ðeTT Þ
oeTT ¼ /ðbÞ � /ðaÞ

b� a
ð24Þ

The above theorem can be extended for a theoretical

inverse of the SLE weights. Considering vectors for the

set of data locations, the difference between the true and
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the updated response estimate using the SLE estimated

parameters at step r is

/ðT Þ � /̂/rðbTT rÞ ¼ ½-ðT
h

þ nðbTT r � T ÞÞ��1
iT
ðbTT r � T Þ

ð25Þ
where -ðT þ nðbTT r � T ÞÞ is a square matrix that involves

only the unknown weights, -, for response data loca-

tions, and it should provide estimates of the vector

T ¼ eTT at xb sample locations. The parameter n is a

number between zero and one, and will be closer to one

depending on the amount of deviation. These weights

will not exactly yield the true residual at a specific step,
but they will be exact for some value in the interval

between the true and the estimated residual value. Thus,

Eq. (25) relates the deviations in an exact way. The

iterative updating of parameters isbTT rþ1 � T ¼ bTT r þ DT rþ1 � T ð26Þ
And since one step of the SLE estimator is

DT r ¼ ð-rÞTD/r�1 ð27Þ
Then

DT r ¼ ð-rÞT ½-ðT
h�

þ nðbTT r�1 � T ÞÞ��1
iT
ðbTT r�1 � T Þ

	
ð28Þ

and

DT rþ1 ¼ ð-rþ1ÞT ½-ðT
h�

þ nðbTT r � T ÞÞ��1
iT
ðbTT r � T Þ

	
ð29Þ

If the last step has been achieved, bTT rþ1 ffi T and

DT rþ1 ¼ ðwÞT ½-ðT
h


þ nðbTT r � T ÞÞ��1
iT
ðbTT r � T Þ

�
ð30Þ

where the weights w provide the ultimate residual to

achieve the true T. Following Eq. (26), one has

T rþ1 � T ¼ ðwÞT ½-ðT
h


þ nðbTT r � T ÞÞ��1

� ½wðT þ nðbTT r � T ÞÞ��1
iT
ðbTT r � T Þ

�
ð31Þ

Thus, to achieve jT rþ1 � T j6 jbTT r � T j the condition is

06wT½-�1 � w�1�T 6 1 ð32Þ
where 1 is the vector of unity; this guarantees that
limr!1 jDT rj ! 0, because each term in the positive

definite matrix of weights may be kept wij 6-ij for each

row-column location, ði; jÞ. This last statement shows

the convergence, and it is extended to non-linear inter-

polation because the non-collocated weights involving

non-data locations are smooth versions of the weights

involved in the proof. For the deterministic case, this

convergence equals that of the classical NR iteration

scheme. This provides a proof of the convergence of the

SLE algorithm.

4. Verification of successive linear estimator

4.1. The exponential forward model

It is difficult to verify the SLE approach for inverse

problems of subsurface hydrology associated with

sparse hydraulic head data because the relationship be-
tween the parameter and response of the system is non-

linear and the exact conditional mean is difficult to

obtain. Consequently, we have to resort to a simplified

forward model, which has a known inverse solution.

The simplified forward model is:

/ðxÞ ¼ expðaT ðxÞÞ ð33Þ
where T ðxÞ, the parameter (i.e., the transmissivity), has a

Gaussian probability density function (pdf), and /ðxÞ,
the response (i.e., the hydraulic head), has a skewed

lognormal pdf, and a is a constant parameter. Note that
flow models based on Eq. (1) will yield a response-

parameter relation that involves convolutions. Loga-

rithmic linearization of Eq. (33) gives a model analogous

to a linear filter in the Hilbert space. Note that in this

example the parameter and response have a collocated

correlation. Because of this exponential relation, a log

transformation of Eq. (33) leads to a Gaussian model, and

the exact conditional mean of ln½/ðxÞ� can be obtained
by using kriging or a linear estimator. On the other

hand, the exponential relation between /ðxÞ and T ðxÞ
provides a test of the ability of SLE to obtain condi-

tional mean estimates bTT ðxÞ from samples of /ðxbÞ which
produce the optimum output /̂/ðxÞ. If our SLE method

is a non-linear estimator, it should yield the identical

results as those derived from the linearized approach.

4.2. The lognormal kriging

Estimating /̂/ðx0Þ for the conditional mean at non-

sample locations based on bTT ðxÞ using simple kriging,

a linear estimator, is not optimal because of the non-

linearity between T ðxÞ and /ðxÞ, as shown in Eq. (32).

However, a log tranformation yields a linear relation-

ship:

aT ðxbÞ ¼ logð/ðxbÞÞ ð34Þ
The data vector /ðxbÞ at locations (xbjb ¼ 1; . . . ; n) of

skewed lognormal distributed data is therefore trans-

formed into TðxbÞ, which is considered to belong to a

Gaussian random field TðxÞ with covariance matrix cTT .

Simple kriging is applied using

cTTkTT0 ¼ cTT0 ð35Þ
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The conditional mean estimate is a linear combination

of the normalized data [12]. That isbTT ðx0Þ ¼ kT
TT0
TðxbÞ ð36Þ

However, the estimates /̂/ðx0Þ must be obtained with a

correction term, which for a ¼ 1 is half of the simple

kriging variance r2
k. Then,

/̂/ðx0Þ ¼ exp abTT ðx0Þ�
þ a2r2

k

2

	
ð37Þ

The correction term is easily demonstrated by consid-

ering that T ðxÞ is Gaussian and /ðxÞ is the exponential

function:

Eð/j/ðxaÞÞ ¼
Z 1

�1
expðaT ðxÞÞ 1

rk

ffiffiffiffiffiffi
2p

p

 exp

 
� ðT ðxÞ � E½T ðxÞ�Þ2

2r2
k

!
dT ð38Þ

where rk represents the conditional standard deviation

or root square of the simple kriging variance, andbTT ðxÞ ffi E½T ðxÞ� is the Gaussian conditional mean. Then,

taking the conditional expected value E½/ðxÞj/ðxaÞ� ffi
/̂/ðxÞ by completion of squares of the exponents yields

the same result as Eq. (37).

4.3. Successive linear estimator for the exponential model

To solve the inverse problem with the SLE method,

the attributes related by the exponential model are split

into mean and perturbation components. Introducing

these terms into the forward model, Eq. (33), gives

E½/ðxÞ� þ hðxÞ ¼ exp aðE½T ðxÞ� þ tðxÞÞ ð39Þ
The inverse problem intends to estimate bTT ðxÞ ffi E½T ðxÞ�
from response data. The covariance structure cDTDT for
the parameters of the perturbation of model is known

a priori. The first-order approximation approach is

used to compute the covariances and cross-covariance

matrices required in the SLE approach, as explained

previously. The sensitivity matrix for this particular

problem is a diagonal matrix where the elements are

computed as

o/ðxÞ
oT ðxÞ ¼ a expðaT ðxÞÞ ð40Þ

where a ¼ 1 for the classical lognormal case. The co-

variances cD/D/ and cross-covariances cD/DT are com-
puted iteratively with the first-order approximation, and

cDTDT are from a exponential covariance model.

4.4. The residual term in the exponential model

Taking the expected value of the forward exponential

model and considering E½hðxÞ� ¼ 0 yields

E½/ðxÞ� ¼ expðaE½T ðxÞ�ÞE½expðatðxÞÞ� ð41Þ

Notice the ‘‘residual’’ term E½expðatðxÞÞ� is the condi-

tional expected value of an exponential function of the

perturbation of the parameter, which is conditioned to

the information of the response attribute. If this ex-

pected value is considered conditional to the informa-
tion of the response attribute, and if the parameter

information is Gaussian, E½expðatðxÞÞ� corresponds to

the case computed above. We already know that for

lognormal kriging, the expected value is one half of the

kriging variance. However, following the classical ap-

proach, we do not include this term in the iterative SLE

approach, because we want to test the algorithm in the

same way as it was used in the inverse problem with flow
models, where the residual terms can not be easily pre-

dicted. Therefore, we may resort to the use of ‘‘effective’’

mean parameters [24]. That is, Eð/Þ ¼ expfaE½T ðxÞ�effg:

4.5. Experimental results for the exponential model

In this experiment, we use a domain consisting of 120

elements, in one dimension, and only seven of them

correspond to a sample of non-Gaussian response data

/ðxbÞ at locations ðxbjb ¼ 1; . . . ; 7Þ located at regular

spacing intervals of 20 m. The mean of the parameters

E½T ðxÞ� is independent of location and the unconditional

mean of the response attribute is E½/ðxÞ�, which is a
function of location representing the mean steady state

hydraulic head. For our example of the exponential

model used here, stationarity of the parameter�s random
field implies stationarity of the response random field

attribute. However, the stationarity assumption is not

required for the SLE non-stationary processes merely

increase the variance within the size of the domain and

thus the non-linearity of the problem. The covariance
for the parameter attribute is assumed to be exponential

with a correlation range of 50 and a sill of 1 with arbi-

trary units.

Note that the exponential forward model in Eq. (39)

was used without considering the conditional mean

model to make the problem equivalent to the setup of

the hydrological mean flow models where residual terms

are ignored and exact conditional mean equations are
not used.

For comparison purposes, the parameter attribute

has been first estimated by lognormal kriging as ex-

plained above. Then, using a FORTRAN program co-

ded with the SLE approach, the parameter and response

attributes were estimated at all 120 locations. A stabi-

lizer was empiricaly found to equal 0.017 in this par-

ticular case. The iteration stops when the L2 norm,P
ð/ðxÞ � /̂/ðxÞÞ2, and variance of the estimates dropped

to specified values.

Fig. 1 shows the estimated values from the SLE

method and lognormal simple kriging for the parameter

attribute bTT ðxÞ where the intersection points correspond

to sample locations at location (0, 20, 40, 60, 80, 100 and
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120). The SLE approach apparently overestimates the

conditional estimates bTT ðxÞ for the parameter attribute.

Fig. 2 is a scatter plot of the estimates bTT ðxÞ from the

SLE algorithm versus those of simple kriging using log-

transformed response data. It shows that the SLE

algorithm overestimates the values compared to log-

normal kriging, which is the known conditional mean

for the parameter attribute.
Differences between the estimates bTT ðxÞ from SLE and

the estimates from log transformed data yield the devi-

ations between these two approaches. A plot of these

differences at all locations is shown in Fig. 3. Surpris-

ingly, the differences show up as deterministic arcs,

which were unclear in Fig. 2 because of the presence of

the slope. They are not random and in fact are related to

the relative location with respect to the samples.

To provide an explanation of these arcs of deviations,

Fig. 4 shows a plot of the error or difference in the es-

timates for the 120 elements in the domain versus the

classical kriging variance of the simple kriging of the

parameter information. A regression analysis shows a
coefficient of determination of 0.999 and a slope equal to

0.5. The deviations are half of the kriging variance as

usually utilized in lognormal kriging (see Eq. (36)).

This result demonstrates the ability of the SLE algo-

rithm to iteratively perform non-Gaussian (lognormal)

Fig. 1. Parameters estimated with the SLE and lognormal approaches.

Fig. 2. A scatter plot of the parameter estimates by the SLE versus

lognormal simple kriging.

Fig. 3. Deviations of the SLE parameter estimates from the true

parameter values.

Fig. 4. Linear regression of kriging variances versus the deviations.
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geostatistical estimations and solve the inverse problem.

This result, plus the previous theoretical analysis, dem-

onstrates that the SLE algorithm is a non-linear condi-

tional mean estimator up to residual terms.
Finally, Fig. 5 shows that the estimates of response

information /̂/ðxÞ obtained from the SLE are the same as

those obtained from the back-transformed lognormal

kriging with Eq. (37) plus the mean. This result is ex-

pected, given our understanding of the convergence

property. Notice that correct results are obtained even

though the conditional mean model (i.e., model with

conditional residual terms) is not used. Thus, the ap-
proach with the exponential model gives the same results

as lognormal kriging for the response attribute.

5. Discussion and conclusion

This study has shown through a simplified example

and a mathematical analysis that the SLE yields unique

parameter estimates for a given response data set––

different from the classical optimization approach. The

SLE predicts the conditional mean of the parameter

field up to an exact deviation due to residual terms in the

mean forward flow model. The role of residual terms in
the solution of the inverse problem is non-trivial and

may lead to systematic bias in the parameter estimates.

Furthermore, the unbiased estimate of the response

head converges to the conditional mean that is non-

Gaussian. For the lognormal experiment, the residual

term coincides with half of the kriging variance, as it is

commonly used in lognormal kriging. Thus, the solution

of the inverse problem with the SLE is an unbiased exact
estimate if the residual terms are included into the for-

ward model. The residual terms are a common feature

of the expected value of non-Gaussian random vari-

ables.

The analysis of both deterministic and stochastic in-

verse problem shows that the SLE approach for the
inverse problems is equivalent to the classical NR

scheme for solving non-linear forward problems. The

weights of SLE for the deterministic inverse problem are

the inverse of the Jacobian of the NR scheme whereas

for the stochastic inverse problem, they are smooth in-

terpreted quantities of the inverse of the Jacobian at

data locations, based on spatial correlation of the pa-

rameter. The classical Gauss–Newton approach is a
special case of the SLE where the parameter is consid-

ered to be spatially independent. While the Gauss–

Newton approach can include the spatial covariance of

the parameter, the SLE updates the conditional covari-

ance of the parameter to reflect improvements in the

estimate at each iteration. Its final estimates, as a result,

are expected to be different those from the Gauss–

Newton approach. Furthermore, the SLE offers a more
computationally efficient algorithm than the Gauss–

Newton approach for determining increments for next

iteration. In addition, we show that for both determin-

istic and stochastic inverse problems, the SLE algorithm

converges as in the NR scheme for non-linear forward

problems.

The deviations in the parameter attribute estimates

(as explained in Figs. 1 and 2) are always positive and do
not have a zero mean. This confirms that the estimates

behave as conditional effective parameters as suggested

by Yeh et al. [24] unless the residual term can be de-

termined and included in the inversion. The spatial

distribution of the conditional mean estimated trans-

missivity values will in general have a lower variance

(smoothing effect) because of the interpolation. Also, a

deviation is expected because of the omission of residual
terms in the classical solutions of the inverse problem in

subsurface hydrology. Such bias is caused by the non-

linearity of the model, and the number of response data

sets. As demonstrated in the example, for skewed log-

normal distributions, the error corresponds to the half

of the estimation variance. The application of the SLE

approach to the inverse problem of Eq. (2) provides a

systematic bias in the parameter estimates because of the
residual term E½rðsðxÞÞ � rðhðxÞÞ�. A geostatistical esti-

mation of this term requires knowledge of the joint

density function of the gradients of perturbations.

Finally, we demonstrated that the SLE approach can

successfully estimate the conditional first moment of the

parameter using successive linear estimation that is

constrained by the governing equation for the condi-

tional first moment. A similar approach may be appli-
cable using higher conditional moments. However, this

may require the development of the governing equation

with higher conditional moments.

Fig. 5. Non-Gaussian response estimated with the SLE approach

(symbol) and lognormal simple kriging (line).
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